MMP Learning Seminar
Week 86
Content:
Boundedness of complements for $F_{\text {ans }}$ type varctices

Anti-pluricanonical systems on Fans varieties:
Theorem 1.4: X a d-dimensional Fans type variety. $\}$ effective $(X, B) \quad \varepsilon-l_{c} C_{a} l_{a b i}-Y_{a v}, B$ big. $\operatorname{coeff}(B) \geqslant \delta>0$. birabionality.
Then $\left|-m K_{x}\right|$ is birational for some $m:=m(d, \varepsilon, \delta)$.

Theorem 1.7: Let X be a d-dimensional Fans type variety.
Then X admits a $N(d)$-complement.

$$
\begin{array}{l}\text { of compos } \\ \text { for } F T\end{array}
$$

Theorem 1.11: The class of d-dimensional exceptional Fano
varieties forms a bounded family. $\left\{\begin{array}{l}\text { Boundedness } \\ \text { of exc } \\ F_{2 n o s} .\end{array}\right.$ varieties forms a bounded family.

Definition: X Fano is called exceptional if for every $0 \leq B \sim a-K x$, the pair (X, B) is kit.

Proposition 1 (Lifting of complements):
Let $(X, B+M)$ be a generalized lo par with $-(K x+B+M)$ is net.
X Fans type. Assume $(X, I+\alpha M)$ is \mathbb{Q}-factonal generalized pit for some $\Gamma \geqslant 0$ and $\alpha \in(0,1)$. Assume $-(K x+\Gamma+\alpha M)$ ample and $S=\lfloor I\rfloor \subseteq\lfloor B\rfloor$. Then:
(*) $\quad H^{0}\left(X, O_{x}\left(-m\left(K_{x}+B+M\right)\right)\right) \longrightarrow H^{0}\left(S, O_{s}\left(-m\left(K_{s}+B_{s}+M_{s}\right)\right)\right)$. for m so that $m(K x+B+M)$ is Well.

Remand: S is $F_{\text {ans }}$ type in the previous statement.

Proposition 2 (Lifting of complements).
X Fans type. $(X, B+M)$ is gal $K-(K x+B+M)$ nef.
Assume there exists $B_{1} \leqslant B$ \& $a \in(0,1)$ s.t
$\left(X, B_{1}+\alpha M\right)$ is gdlt not grit \& $-\left(K_{x}+B_{1}+a M\right)$ is big $+n e f$.
Then, there exists a diagram as follows:
Fans type $\begin{aligned} & \\ & S^{\prime} \longrightarrow X^{\prime} \quad . \varphi \text { only extracts } s^{\prime} \\ & \downarrow^{\varphi} \\ & X\end{aligned}$

$$
H^{0}\left(X^{\prime}, O_{x^{\prime}}\left(-m\left(K_{x^{\prime}}+\varphi_{x}^{-1} B+S^{\prime}+M^{\prime}\right)\right)\right) \longrightarrow H^{0}\left(S^{\prime}, O_{s^{\prime}}\left(-m\left(K_{s^{\prime}}+B_{s^{\prime}}+M_{s^{\prime}}\right)\right)\right) .
$$

surgective, whenever $m(K x+B+M)$ is Neil.

Remark: $(X, B+M)$ generalized lt \& X Fano type $(X, B+M)$ is not grit \& $\{B\}+M$ is big and net.
Then we can lift complements from lower dimension.
$P_{\text {roof: }}$
Step 1: Find new divisor $B_{2} \leqslant B_{1}$.

$$
B_{2}=b B_{1} \text { with } b<1 . \quad X \longrightarrow V \text { defined }-\left(K_{x}+B_{1}+a M\right)
$$

Ron $-\left(N_{x}+B_{2}+a b M\right)-M M P$ over V

$$
X \rightarrow X^{\prime} \quad-\left(K_{x}+B_{2}+a b M\right) \text { is net }
$$

$$
-\left(K x^{\prime}+B_{i}^{\prime}+a b M\right)(1-t)-\left(K x^{\prime}+B_{1}^{\prime}+a M\right) t \text { is blip \& nef. }
$$ for t small enough.

replace B_{2} with $(1-t) B_{2}{ }^{i}+B_{i} t$
abM with $(1-t) a b M+a t M$
X with X^{\prime}
$\left\{\begin{array}{l}\text { i) }(X, B+M) \text { gdlt }-(K x+B+M) \text { nef } \\ \text { ii) }\left(X, B_{1}+a M\right) \text { gdlt not grit \& }-\left(K x+B_{1}+a M\right) \text { by \& } \\ \text { iii) }\left(X, B_{2}+a b M\right) \text { gKlt \& }-\left(K x+B_{2}+a b M\right) \text { big \& nef. }\end{array}\right.$

Step 2: We produce an anti-ample pair.

$$
-\left(K_{x}+B_{1}+\alpha M\right) \sim Q A+{\underset{\sim}{\chi^{2 m p l e}}}^{\underbrace{}_{\text {effective }}}
$$

Does E contain any gila of $\left(X, B_{1}+a M\right)$?
No. $\quad\left(X, B_{1}+\varepsilon E+a M\right) \longrightarrow$ gen $d t$.

Yes. $t:=\operatorname{glct}\left(\left(X, B_{2}+a b M\right) ; E+B_{1}-B_{2}\right)$. We have.

$$
\begin{aligned}
& \left(X, B_{2}+t\left(E+B_{1}-B_{2}\right)+a b M\right) F g l c . \quad t>0 \\
& -\left(K x+B_{2}+t\left(E+B_{1}-B_{2}\right)+a b M\right)= \\
& -\left(K x+B_{1}+a M\right)+B_{1}-B_{2}-t\left(E+B_{1}-B_{2}\right)+a(1-b) M \sim a \\
& A+\sim_{a}+(1-t)\left(B_{1}-B_{2}\right)-t E+a(1-b) M= \\
& t A+(1-t)\left(A+E+\left(B_{1}-B_{2}\right)\right)+a(1-b) M \sim a \\
& t A-(1-t) \underbrace{\left(K x+B_{2}+a b M\right.}_{\text {ref }})+t a(1-b) M \\
& (\Theta)=B_{2}+t\left(E+B_{2}-B_{1}\right)
\end{aligned}
$$

$(X, \Theta+a b M)$ gen $l c+a n t_{1}-$ ample.
Step 3: Reduce to the gilt case
$L \Theta\rfloor \neq 0$. Then, perturbing coefficients we obtain gilt.
$\lfloor\Theta\rfloor=0$

$$
\left(X^{\prime}, \Theta^{\prime}+a b M\right) \xrightarrow{\psi}(X, \Theta+a b M)
$$

Q- fact gen dit modification
$E=$ reduced exceptional of Ψ.
$\left(N_{x^{\prime}}+E+a b M\right)-M M P$ over X, by neg lemma it terminates on X.

Taking linear combinations, we get to the case:
colt + not grit anti-ample.

Proposition 3 (Complements for non gall pairs):
Assume existence of bounded complements for Fans type pairs\} ~ of dimension $d-1$.
$(X, B+M)$ glee \& anti-nef. X Fans type $(X, B+M)$ is not jolt, either $K x+B+M x_{0} 0_{1}$ or $M \not x_{0} 0$.
Then $(X, B+M)$ admits a bounded complement.

$$
\begin{aligned}
& N=-\left(K_{x}+B+M\right) \quad K_{x}+B+\underbrace{M+N}_{\substack{\text { so } \\
0}} \sim \infty 00 \\
& \hat{\tau}_{b-\text { Ref dikior }} N
\end{aligned}
$$

Proof:

defined. by $-\left(K_{x}+B+M\right)$ M- MMP over Z

- $\operatorname{dim} V<\operatorname{dim} X^{\prime}$, then we can use the canonical bundle formula and lift complements from V.
- $\operatorname{dim} V=\operatorname{dim} X^{\prime}, \quad M$ is big + net

$$
(X, B+\alpha M) \text { with } \alpha<1
$$

$-(k x+B+\alpha M)$ is big and ness. by Proposition 2.

Remark: Now, we have bounded complements for ole pairs which are not gilt \& $M x_{a}$.

Proposition 4 (Complements for strongly non -exceptional)
Assume existence of bounded complements for Faro type pairs of dimension $d-1$.
X Fano type. $(X, B+M)$ is glee, $-(K x+B+M)$ nef. $(X, B+M)$ is strongly non -exc. Then $(X, B+M)$ admits a bounded comp.
Proof: $\quad\left(X, B+P_{v_{0}}+M\right)$ non-gle comp. $\quad t=g \operatorname{lc}((X, B+M) ; P)<1$. $\left(X^{\prime}, \Omega^{\prime}+M^{\prime}\right)$ gall of $(X, B+t P+M)$
perturb the coeff sit it has the same coeff than B.

- (K $\left.x^{\prime}+\Omega^{\prime}+M^{\prime}\right)$-MMP until it is scmiample

When semiample, we have that $-\left(K_{x^{\prime}}+\Omega^{\prime}+\mu^{\prime}\right) x_{0} 0$.
We can apply Prop 3 to conclude that
$\left(X^{\prime}, \Omega^{\prime}+M^{\prime}\right)$ and hence $(X, B+M)$ admits a bounded complement

Proposition 5 (Index conjecture for Fans type pairs): Assume existence of bounded complements for Fans type pairs of dimension $d-1$.
X d-dimensional Fans type., $(X, B) L_{c}, \operatorname{cocff}(B) \subseteq R$ $K x+B \sim Q_{0}$. Then $N\left(K_{x}+B\right) \sim 0$ for some N only depending on $d \& R$.

Step 1: We reduce to the case in which X is $\varepsilon-l$. \& $p(x)=1$

This is a simple application of ACC for Int's.
If a div over X has log discrepancy $\varepsilon>0$ only dep on Rad. we can extract it and increase its coeff to 1.

$$
\begin{array}{rlr}
X \cdots & X^{\prime} & \operatorname{dim} T>0, \text { canonical bundle formula } \\
\Psi & \downarrow \text { MES } & q\left(K x^{\prime}+B^{\prime}\right) \sim q \psi^{*}\left(K_{T}+B_{T}+M_{T}\right)
\end{array}
$$

controlled index by ind on dimension.

We may assume $T=p t . \quad p\left(X^{\prime}\right)=1$.

Step 2: Introduce some divisors $A \& R$.

By Theorem 1.4: $\left|-n K_{x}\right|$ defines a birational map.

$$
X^{\prime} \quad \phi^{*}\left(-n K_{x}\right) \sim A^{\prime}+R^{\prime}
$$

$\phi \downarrow \quad A$ will be the pushforward to X of a X general member of $\left|A^{\prime}\right|$.

$$
R=\phi_{\star} R!
$$

$$
n\left(K_{x}+\frac{1}{n} A+\frac{1}{n} R\right) \sim 0 \quad\left(X, \frac{1}{n} A+\frac{1}{n} R\right) \text { is } K_{\text {. }} \text {. }
$$

Step 3: We define Δ \& N.

$$
\Delta=\frac{1}{2} B+\frac{1}{2 n} R \quad N=\frac{1}{2 n} A
$$

gen pair. with b-nef divisor N

$$
\begin{aligned}
2 n(K x+\Delta+N) & =2 n\left(K x+\frac{1}{2} B+\frac{1}{2 n} R+\frac{1}{2 n} A\right) \\
& =n(K x+B)+\overline{n K x+R+A}) \sim 0 \\
& \sim n(K x+B)
\end{aligned}
$$

$k x+\Delta+N \sim_{0} 0 \longrightarrow$ not grit (gie) then we are done,"
Step 4 : We show the statement when $(X, \Delta+N)$ is kit.

$$
\begin{array}{cc}
\varepsilon^{\prime}=\min \left\{\frac{\varepsilon}{2}, \frac{1}{2 n}\right\} . & \text { Claim: }(X, \Delta+N) \text { is } \varepsilon^{\prime}-l_{c} . \\
0<a(D, X, \Delta+N)<\varepsilon^{\prime} . \\
a(D, X, \Delta+N)=\frac{1}{2} a(D, X, B)+\frac{1}{2} a\left(D, X, \frac{1}{n} R+\frac{1}{n} A\right) \\
v & V \\
0 & 0 \\
\text { then }>\varepsilon . & \text { then } \geqslant \frac{1}{n} .
\end{array}
$$

$\left.\begin{array}{l}(X, \Delta+N) \text { kIt, } \Delta+N \text { big, coff } \Delta+N \text { are in a finite set } \\ k \times+\Delta+N \text { is } Q \text {-trivial }(X, \Delta+N) \text { is } \varepsilon^{\prime}-k\end{array}\right\}$ H_{2} con $-\mathrm{X}_{\mathrm{u}} \longrightarrow X$ belongs bo a bounded family,

Proposition 6 (Complements for mon-exceptional)
Assume existence of bounded complements for Fans type pairs of dimension $d-1$.
X Fano type. $(X, B+M)$ is $g l c,-(K x+B+M)$ nef. $(X, B+M)$ is strongly non-exc. Then $(X, B+M)$ admits a bounded, complement.,
Proof: $\quad\left(X, B+P_{v_{1}}+M\right)$ non_glc comp. $\quad t=g l c((X, B+M) ; p) \leqslant 1$. $\left(X^{\prime}, \Omega^{\prime}+M^{\prime}\right)$ gall of $(X, B+t P+M)$
perturb the coeff sit it has the same coeff than B.
$-\left(K x^{\prime}+\Omega^{\prime}+M^{\prime}\right)-M M P$ until it is semiample
When semiample, we have that $-\left(K_{x^{\prime}}+\Omega^{\prime}+\mu^{\prime}\right)$ We can apply Prop 3 to conclude that $\left(X^{\prime}, \Omega^{\prime}+M^{\prime}\right)$ and hence $(X, B+M)$ admits a bounded complement

If
$-\left(K x^{\prime}, \Omega^{\prime}, M^{\prime}\right)$
$\sim_{0}^{0}$$\left\{\begin{array}{l}\text { The only case in which we cannot apply } \\ P_{\text {Pop }} 3 \text { is when } M \widetilde{Q}^{0} . \\ \text { In this case } K x^{\prime}+\Omega^{\prime} \sim Q 0 \text { so we can } \\ \text { apply Proposition } 5 .\end{array}\right.$

Proof: $(X, B+M)$ as in the statement of The 1.7 in dimension d.

If $(X, B+M)$ is non -exc. then Prop 6 implies it admits a bounded complement.

If $(X, B+M)$ is exc. The 1.11 (d) imphes it belongs to a bounded family. In this bounded family we can find a universal constant for which
$\Gamma \in|-N(K x+B+M)|$ is a bpf hear system
\uparrow
general

$$
(X, B+\Gamma / N+M) \text { is a } N \text {-comp. }
$$

